Ch 11 Atmosphere Assessment

Reviewing Vocabulary

Match the definition in Column A with the term in Column B.

	Column A		Column B
1.	The temperature to which air must be cooled at constant pressure to reach saturation	a. b.	latent heat stability
2.	The gas formed by adding a third oxygen atom to an oxygen molecule	c. d.	ozone radiation
3.	Heat that is stored in a substance	e.	dew point
4.	An air mass's ability to resist rising	f.	precipitation
5.	All forms of water that fall from clouds		
6.	The transfer of energy through space by electromagnetic waves		
-	ontrast each pair of related terms. In other words	, how are they	the same and how are they differ
heat, tempe	erature		
humidity, r	elative humidity		
humidity, r	elative humidity		
humidity, r	elative humidity		
humidity, r	elative humidity		
humidity, r	elative humidity		
	elative humidity on, evaporation		
condensatio			
condensatio	on, evaporation		

Understanding Main Ideas (Part A)

		1	l .		mposed mostly of <i>helium</i> and f other gases such as carbon por.		
		2	2.		nportant because it contains as harmful ultraviolet radiation		
		3	3.	Both temperature and pressure generally <i>decrease</i> wi height in the troposphere.			
		4	l.	The amount of water vapor in a given volume of air is its <i>relative humidity</i> .			
		5	5.	The height in the atmosphere at which condensation occurs is the <i>lifted condensation level</i> .			
		6	ĺ.	A temperature inversive with height in the atm	ion is a <i>decrease</i> in temperature		
				with neight in the ath	iosphere.		
le ti	he letter	of the choice that best co	omj	-	-		
		of the choice that best constitution nuclei are partic		pletes the statement or a	unswers the question.		
				pletes the statement or a	unswers the question.		
	Conder a.	nsation nuclei are partic		pletes the statement or a es of atmospheric dust c.	enswers the question. around which		
	Conder a. b.	ozone collects.	cle	pletes the statement or a es of atmospheric dust c. d.	around which evaporation occurs.		
7.	Conder a. b.	ozone collects. cloud droplets form.	cle	pletes the statement or a es of atmospheric dust c. d.	around which evaporation occurs.		
7.	Conder a. b. In orog a.	ozone collects. cloud droplets form. graphic lifting, clouds form.	cle	es of atmospheric dust c. d. m when moist winds c.	around which evaporation occurs. winds form.		
 8. 	Conder a. b. In orog a. b.	ozone collects. cloud droplets form. craphic lifting, clouds for flow over the sea.	cle	pletes the statement or a ces of atmospheric dust c. d. m when moist winds c. d.	around which evaporation occurs. winds form. encounter mountains. warm up the ground.		
 8. 	Conder a. b. In orog a. b.	ozone collects. cloud droplets form. craphic lifting, clouds for flow over the sea. become drier.	cle	pletes the statement or a ces of atmospheric dust c. d. m when moist winds c. d.	around which evaporation occurs. winds form. encounter mountains. warm up the ground.		
 8. 	Conder a. b. In orog a. b. Cloud a.	ozone collects. cloud droplets form. graphic lifting, clouds for flow over the sea. become drier. droplets collide to form	cle	pletes the statement or a cs of atmospheric dust c. d. m when moist winds c. d. arger droplets in a proc c.	around which evaporation occurs. winds form. encounter mountains. warm up the ground.		
7.8.9.	Conder a. b. In orog a. b. Cloud a. b.	ozone collects. cloud droplets form. graphic lifting, clouds for flow over the sea. become drier. droplets collide to form coalescence. convection.	ori	pletes the statement or a cs of atmospheric dust c. d. m when moist winds c. d. arger droplets in a proc c. d.	around which evaporation occurs. winds form. encounter mountains. warm up the ground. cess called condensation. composition.		
7.8.9.	Conder a. b. In orog a. b. Cloud a. b. What i	ozone collects. cloud droplets form. graphic lifting, clouds for flow over the sea. become drier. droplets collide to form coalescence. convection.	ori	pletes the statement or a cs of atmospheric dust c. d. m when moist winds c. d. arger droplets in a proc c. d.	around which evaporation occurs. winds form. encounter mountains. warm up the ground. cess called condensation. composition. atmosphere and Earth's surface?		

Understanding Main Ideas (Part B)

Answer the following questions.

1.	Compare and contrast cumulus and cirrus clouds.
2.	What is moving air called? Thoroughly explain why air moves in the atmosphere(troposphere)?
3.	Explain how a temperature inversion might form on a clear winter night.
4.	A temperature inversion hangs over a city area. Is the formation of a towering cumulonimbus cloud likely? Explain your answer.
5.	Compare and contrast the troposphere and the stratosphere.

Thinking Critically

Use the graph to answer the following questions.

- 1. Do air pressure and temperature change in the same way with altitude? Explain your answer.
- 2. Describe the temperature changes that take place in each layer of the atmosphere.

m 1

Stratosphere:

Mesosphere:____

Thermosphere:

3. Explain why the temperature increases with height in the stratosphere?

Applying Scientific Methods

A group of students decided to make a simple model of the lower atmosphere(troposphere). To create their model, they used a clean glass jar, hot water, and a tray of ice cubes.

The students poured hot water into the jar to a level of about 4 cm, about 1.5 inches. They then filled a small metal container with ice cubes and placed it over the jar's opening, as shown in the illustration below.

Within a few seconds, the students observed white ribbons of mist forming in the center of the jar. Soon a larger white, misty area had formed inside the jar between the surface of the water and at the top of the jar close to the opening.

Answer the following questions.

l .	What formed inside the jar? Explain how it formed.
	·
2.	How does the temperature of the air in the model atmosphere vary with height? Thoroughly explain your answer.

3.	How might the results have been different if the tray of ice had not been placed over the opening of the jar closing it off?
4. -	How might the results have been different if students had put cold water in the bottom of the jar instead of hot water?
- 5.	Based on your knowledge of cloud formation, compare the model with the formation of clouds in Earth's lower atmosphere.
-	
- 6.	Describe how you would change the design of the model to create a continuous water cycle. Explain how water would cycle through the new model.
-	