Metamorphism / Metamorphic Rocks

Metamorphism: occurs when rocks are subjected to *heat*, *pressure*, and/or *other environmental* conditions - The rock remains a solid during this time

- Why Should You Study Metamorphic Rocks?

- Exposed metamorphic rocks make up large parts of continents
- Certain minerals in metamorphic rocks give clues about the conditions existing when they formed
- Used widely as building materials and manufacturing

- Why does Metamorphism occur?

- Minerals are only stable only within certain temperature and pressure ranges.
- Minerals will decompose and rearrange to form different minerals that are stable at the new temperature and pressure

- Factors that Cause Metamorphism

* Temperature and Pressure! * & Fluid activity

- Temperature

- The deeper you go, the hotter it gets
 - Geothermal gradient = $20-30^{\circ}$ C/Km
 - Depth ↓ Temp ↑
- Increases the rate of chemical reactions that produce different minerals
- Heat sources
 - intrusive magma
 - deep burial along subduction zones

- Pressure

- The deeper you go the more pressure there is
- lithostatic pressure: from the weight of overlying rocks
 - Depth + Temp +
- Expressed in kilobars
 - 1 kilobar = 1000 atmospheres
 - 1 atmosphere = 14.7 lb/in^2
 - 1 kilobar = 14700 lb/in^2
- Pressure increases .3 kilobar/km
- Mineral grains are more closely packed
- Recrystallization may occur
- **Differential pressure:** from unequal forces applied to the rock
- **Deformation:** Changes in the shape of the rock due to mechanical forces. Results in foliation (layering). Foliation is perpendicular to pressure.

The layers are said to have Slaty Cleavage

- Fluid Activity

- water and carbon dioxide are almost always present in some amount in metamorphic regions
- these fluids enhance metamorphism by increasing the rate of chemical reactions

- Fluid Source

- water trapped in the pore space of sedimentary rocks (groundwater)
- from cooling magma (juvenile water)
- dehydration of water-bearing minerals that are subjected to heat and pressure: water released due to metamorphism (metamorphic water)

Types of Metamorphism

- Contact Metamorphism: produced when a body of
 - magma alters the surrounding country rock
 - causes old minerals to decompose and new ones to form, causes metamorphism to occur
 - Factors in contact metamorphism
 - initial temperature and size of the intrusion
 - presence and chemistry of fluids
 - Metamorphic aureoles (halo)
 - zones of mineral assemblages surrounding intrusion

- Rock Characteristics

- Nonfoliated
- Little to no deformation

- Typical Contact Metamorphism Rocks

- *Hornfels*: dark to black
- *Skarn (tactite)*: Contact metamorphism of carbonate rocks: limestone or dolomite
 - usually, large grained or crystals

- Regional Metamorphism

- occurs when 2 lithospheric plates collide and squeeze and deform rocks as a result
- highly deformed
- associated with mountain building
- produces most metamorphic rocks; makes up the shields
- results from extreme heat and pressure generated by the processes at convergent plate boundaries
- covers large geographic areas, and usually shows a gradation of deformation corresponding to areas of the most intense heat/pressure

© 1998 Wadsworth Publishing Company/ITP

- certain minerals are known to form under specific conditions of temperature and pressure: *index minerals*
- low, intermediate, and high grades of metamorphism are recognized, based on conditions and the resulting mineral assemblages

Types of Metamorphism and Metamorphic Rocks

Metamorphism is divided into three general categories on the basis of the causes of metamorphism.

Figure 7–8 Temperature, pressure, and depth ranges of low-, medium-, and high-grade metamorphism. The arrow represents a "normal" geothermal gradient such as found within a stable craton.

- Foliated Metamorphic Rocks
 - Heat and differential pressure cause minerals to arrange themselves in a parallel fashion called foliation
 - size and shape of crystals determines texture; fine to coarse
 - with increasing grain size, common foliated metamorphic rocks include:
 - Slate

- Phyllite

- Gneiss

- Regional Burial

- (subset of regional): occurs when rock is buried at depths greater than 2 Km
 - Lots of pressure; 1 cubic foot of granite equals 168 lbs.
 - Non-foliated
 - Common rocks
 - Marble: parent rock is limestone

Limestone

- Quartzite: parent rock is quartz sandstone

Quartz sandstone

Quartzite

- In sandstone (A) fractures run between the sand grains. In quartzite (B) fractures run through the grains

